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What is Geostatistics? 
 
“Geostatistics:  study of phenomena that vary in space and/or time” 
(Deutsch, 2002) 
 
“Geostatistics can be regarded as a collection of numerical 
techniques that deal with the characterization of spatial attributes, 
employing primarily random models in a manner similar to the 
way in which time series analysis characterizes temporal data.” 
(Olea, 1999) 
 
“Geostatistics offers a way of describing the spatial continuity of 
natural phenomena and provides adaptations of classical regression 
techniques to take advantage of this continuity.”  (Isaaks and 
Srivastava, 1989) 
 
 
Geostatistics deals with spatially autocorrelated data. 
 
Autocorrelation:  correlation between elements of a series and 
others from the same series separated from them by a given 
interval.  (Oxford American Dictionary) 
 
 
 
Some spatially autocorrelated parameters of interest to reservoir 
engineers:  facies, reservoir thickness, porosity, permeability 
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Some Geostatistics Textbooks 
 
C.V. Deutsch, 2002, Geostatistical Reservoir Modeling, Oxford University Press, 376 
pages.  

o Focuses specifically on modeling of facies, porosity, and permeability for 
reservoir simulation. 

 
C.V. Deutsch and A.G. Journel, 1998, GSLIB: Geostatistical Software Library and 
User's Guide, Second Edition, Oxford University Press, 369 pages.  

o Owner's manual for the GSLIB software library; serves as a standard 
reference for concepts and terminology. 

 
P. Goovaerts, 1997, Geostatistics for Natural Resources Evaluation, Oxford 
University Press, 483 pages.  

o A nice introduction with examples focused on an environmental chemistry 
dataset; includes more advanced topics like factorial kriging. 

 
E.H. Isaaks and R.M. Srivastava, 1989, An Introduction to Applied Geostatistics, 
Oxford University Press, 561 pages.  

o Probably the best introductory geostatistics textbook; intuitive 
development of concepts from first principles with clear examples at every 
step. 

 
P.K. Kitanidis, 1997, Introduction to Geostatistics: Applications in Hydrogeology, 
Cambridge University Press, 249 pages.  

o A somewhat different take, with a focus on generalized covariance 
functions; includes discussion of geostatistical inversion of (groundwater) 
flow models. 

 
M. Kelkar and G. Perez, 2002, Applied Geostatistics for Reservoir Characterization, 
Society of Petroleum Engineers Inc., 264 pages.  

o Covers much the same territory as Deutsch's 2002 book; jam-packed with 
figures illustrating concepts. 

 
R.A. Olea, 1999, Geostatistics for Engineers and Earth Scientists, Kluwer Academic 
Publishers, 303 pages.  

o Step by step mathematical development of key concepts, with clearly 
documented numerical examples. 

 
Links to some software and online resources are available at 
 
http://people.ku.edu/~gbohling/geostats 
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Basic Components of Geostatistics 
 
(Semi)variogram analysis – characterization of spatial correlation 
 
Kriging – optimal interpolation; generates best linear unbiased 

estimate at each location; employs semivariogram model 
 
Stochastic simulation – generation of multiple equiprobable 

images of the variable; also employs semivariogram model 
 
 
 
Geostatistical routines are implemented in the major reservoir 
modeling packages like Petrel and Roxar’s Irap RMS; used in the 
generation of grids of facies, permeability, porosity, etc. for the 
reservoir. 
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Exploratory Analysis of Example Data 
 
Our example data consist of vertically averaged porosity values, in 
percent, in Zone A of the Big Bean Field (fictitious, but based on 
data from a real field).  Porosity values are available from 85 wells 
distributed throughout the field, which is approximately 20 km in 
east-west extent and 16 km north-south.  The porosities range from 
12% to 17%.  Here are the data values posted at the well locations: 
 

 
 
Geostatistical methods are optimal when data are 

- normally distributed and 
- stationary (mean and variance do not vary significantly in 

space) 
Significant deviations from normality and stationarity can cause 
problems, so it is always best to begin by looking at a histogram or 
similar plot to check for normality and a posting of the data values 
in space to check for significant trends.  The posting above shows 
some hint of a SW-NE trend, which we will check later. 
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Looking at the histogram (with a normal density superimposed) 
and a normal quantile-quantile plot shows that the porosity 
distribution does not deviate too severely from normality: 
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Spatial Covariance, Correlation and Semivariance 
 
You have already learned that covariance and correlation are 
measures of the similarity between two different variables.  To 
extend these to measures of spatial similarity, consider a scatterplot 
where the data pairs represent measurements of the same variable 
made some distance apart from each other.  The separation 
distance is usually referred to as “lag”, as used in time series 
analysis.  We’ll refer to the values plotted on the vertical axis as 
the lagged variable, although the decision as to which axis 
represents the lagged values is somewhat arbitrary.  Here is a 
scatterplot of porosity values at wells separated by a nominal lag of 
1000 m: 
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Because of the irregular distribution of wells, we cannot expect to 
find many pairs of data values separated by exactly 1000 m, if we 
find any at all.  Here we have introduced a “lag tolerance” of 500 
m, pooling the data pairs with separation distances between 500 
and 1500 m in order to get a reasonable number of pairs for 
computing statistics.  The actual lags for the data pairs shown in 
the crossplot range from 566 m to 1456 m, with a mean lag of 
1129 m. 
 
The three statistics shown on the crossplot are the covariance, 
correlation, and semivariance between the porosity values on the 
horizontal axis and the lagged porosity values on the vertical axis.  
To formalize the definition of these statistics, we need to introduce 
some notation.  Following standard geostatistical practice, we’ll 
use: 
 
u: vector of spatial coordinates (with components x, y or 

“easting” and “northing” for our 2D example) 
z(u): variable under consideration as a function of spatial location 

(porosity in this example) 
h: lag vector representing separation between two spatial 

locations 
z(u+h): lagged version of variable under consideration 
 
Sometimes z(u) will be referred to as the “tail” variable and z(u+h) 
will be referred to as the “head” variable, since we can think of 
them as being located at the tail and head of the lag vector, h.  The 
scatterplot of tail versus head values for a certain lag, h, is often 
called an h-scattergram. 
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Now, with N(h) representing the number of pairs separated by lag 
h (plus or minus the lag tolerance), we can compute the statistics 
for lag h as 
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where m0 and m+h are the means of the tail and head values: 
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and 0σ  and h+σ  are the corresponding standard deviations: 
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Note that these definitions for ( )hC  and ( )hγ  use ( )hN  in the 
denominator, not ( ) 1−hN . 
 
The semivariance is the moment of inertia or spread of the h-
scattergram about the 45° (1 to 1) line shown on the plot.  
Covariance and correlation are both measures of the similarity of 
the head and tail values.  Semivariance is a measure of the 
dissimilarity. 
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Here are the h-scatterplots for nominal lags of 2000 m and 3000 m.  
Note that the covariance and correlation decrease and the 
semivariance increases with increasing separation distance. 
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The plot above shows all three statistics versus actual mean lag for 
the contributing data pairs at each lag.  The shortest lag shown (the 
nominally “zero” lag) includes six data pairs with a mean lag of 
351 m.  The correlation versus lag is referred to as the correlogram 
and the semivariance versus lag is the semivariogram.  The 
covariance versus lag is generally just referred to as the covariance 
function. 
 
The empirical functions that we have plotted – computed from the 
sample data – are of course just estimators of the theoretical 
functions ( )hC , ( )hρ , and ( )hγ , which can be thought of as 
population parameters.  Estimating these functions based on 
irregularly distributed data (the usual case) can be very tricky due 
to the need to pool data pairs into lag bins.  Larger lag spacings 
and tolerances allow more data pairs for estimation but reduce the 
amount of detail in the semivariogram (or covariance or 
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correlogram).  The problem is particularly difficult for the shorter 
lags, which tend to have very few pairs (six in this example).  This 
is unfortunate, since the behavior near the origin is the most 
important to characterize. 
 
Under the condition of second-order stationarity (spatially 
constant mean and variance), the covariance function, correlogram, 
and semivariogram obey the following relationships: 
 
  ( ) ( ) ( )( ) ( )( )uuu0 ZZZC Var,Cov ==  

  ( ) ( ) ( )0hh CC=ρ  

  ( ) ( ) ( )h0h CC −=γ  

In words, the lag-zero covariance should be equal to the global 
variance of the variable under consideration, the correlogram 
should look like the covariance function scaled by the variance, 
and the semivariogram should look like the covariance function 
turned upside down: 
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In practice, the estimated versions of the functions will violate 
these relationships to a greater or lesser extent due to sampling 
limitations and deviations from second-order stationarity. 
 
Unlike time series analysts, who prefer to work with either the 
covariance function or the correlogram, geostatisticians typically 
work with the semivariogram.  This is primarily because the 
semivariogram, which averages squared differences of the 
variable, tends to filter the influence of a spatially varying mean.  
Also, the semivariogram can be applied whenever the first 
differences of the variable, ( ) ( )huu +− ZZ , are second-order 
stationary.  This form of stationarity, referred to as the intrinsic 
hypothesis, is a weaker requirement than second-order stationarity 
of the variable itself, meaning that the semivariogram can be 
defined in some cases where the covariance function cannot be 
defined.  In particular, the semivariance may keep increasing with 
increasing lag, rather than leveling off, corresponding to an infinite 
global variance.  In this case the covariance function is undefined. 
 
Trend 
 
If the empirical semivariogram continues climbing steadily beyond 
the global variance value, this is often indicative of a significant 
spatial trend in the variable, resulting in a negative correlation 
between variable values separated by large lags.  Three options for 
dealing with lag include: 

1) Fit a trend surface and work with residuals from the trend 
2) Try to find a “trend-free” direction and use the variogram 

in that direction as the variogram for the “random” 
component of the variable (see the section on anisotropy, 
below) 

3) Ignore the problem and use a linear or power variogram 
The semivariogram for the porosity data does not seem to indicate 
a significant trend. 
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Characteristics of the Semivariogram 
 

 
 
Sill:  The semivariance value at which the variogram levels off.  
Also used to refer to the “amplitude” of a certain component of the 
semivariogram.  For the plot above, “sill” could refer to the overall 
sill (1.0) or to the difference (0.8) between the overall sill and the 
nugget (0.2).  Meaning depends on context. 
 
Range:  The lag distance at which the semivariogram (or 
semivariogram component) reaches the sill value.  Presumably, 
autocorrelation is essentially zero beyond the range. 
 
Nugget:  In theory the semivariogram value at the origin (0 lag) 
should be zero.  If it is significantly different from zero for lags 
very close to zero, then this semivariogram value is referred to as 
the nugget.  The nugget represents variability at distances smaller 
than the typical sample spacing, including measurement error. 
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Modeling the Semivariogram 
 
For the sake of kriging (or stochastic simulation), we need to 
replace the empirical semivariogram with an acceptable 
semivariogram model.  Part of the reason for this is that the kriging 
algorithm will need access to semivariogram values for lag 
distances other than those used in the empirical semivariogram.  
More importantly, the semivariogram models used in the kriging 
process need to obey certain numerical properties in order for the 
kriging equations to be solvable.  (Technically, the semivariogram 
model needs to be non-negative definite, in order the system of 
kriging equations to be non-singular.)  Therefore, geostatisticians 
choose from a palette of acceptable or licit semivariogram models. 
 
Using h to represent lag distance, a to represent (practical) range, 
and c to represent sill, the five most frequently used models are: 
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The nugget model represents the discontinuity at the origin due to 
small-scale variation.  On its own it would represent a purely 
random variable, with no spatial correlation. 
 
The spherical model actually reaches the specified sill value, c, at 
the specified range, a.  The exponential and Gaussian approach the 
sill asymptotically, with a representing the practical range, the 
distance at which the semivariance reaches 95% of the sill value.  
These three models are shown below: 

 
 
The Gaussian model, with its parabolic behavior at the origin, 
represents very smoothly varying properties.  (However, using the 
Gaussian model alone without a nugget effect can lead to 
numerical instabilities in the kriging process.)  The spherical and 
exponential models exhibit linear behavior the origin, appropriate 
for representing properties with a higher level of short-range 
variability. 
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Models with a finite sill, like the Gaussian, exponential, and 
spherical, are referred to as transition models and have 
corresponding covariance functions given by ( ) ( )hgch −=cov .  
The power model does not reach a finite sill and does not have a 
corresponding covariance function.  Power-law semivariogram 
models are appropriate for properties exhibiting fractal behavior. 
 
Linear combinations of licit semivariogram models are also licit 
models, so that more complicated models may be built by adding 
together the basic models described above with different ranges 
and sills, leading to the second meaning of “sill” discussed above.  
For example, a variogram model might consist of a nugget of 0.1, a 
Gaussian component with a range of 1500 m and a sill of 0.2 and 
an exponential component with a range of 8000 m and sill of 0.6, 
giving an overall sill of 0.9: 
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The actual process of fitting a model to an empirical 
semivariogram is much more of an art than a science, with 
different authorities suggesting different methods and protocols.  
Since empirical semivariograms are often quite noisy, quite a bit of 
subjective judgment goes into selecting a good model.  Here is the 
semivariogram for our example porosity data, with three fitted 
models.  In each case the sill value was fixed at the overall 
variance of 0.78 and the range was estimated using weighted 
nonlinear regression (weighting by number of data pairs for each 
lag): 

 
 
The fitted ranges for the three models are 4141 m for the spherical, 
5823 m for the exponential, and 2884 m for the Gaussian.  The 
Gaussian model gives the best fit, but the spherical is a close 
second. 



 19 

Anisotropy 
 
The above discussion has assumed that the spatial correlation 
structure is the same in all directions, or isotropic.  In this case the 
covariance function, correlogram, and semivariogram depend only 
on the magnitude of the lag vector, h=h , and not the direction, 
and the empirical semivariogram can be computed by pooling data 
pairs separated by the appropriate distances, regardless of 
direction.  Such a semivariogram is described as omnidirectional. 
 
In many cases, however, a property shows different autocorrelation 
structures in different directions, and an anisotropic semivariogram 
model should be developed to reflect these differences.  The most 
commonly employed model for anisotropy is geometric anisotropy, 
with the semivariogram reaching the same sill in all directions, but 
at different ranges.  In geological settings, the most prominent 
form of anisotropy is a strong contrast in ranges in the 
(stratigraphically) vertical and horizontal directions, with the 
vertical semivariogram reaching the sill in a much shorter distance 
than the horizontal semivariogram.  In some settings, there may 
also be significant lateral anisotropy, often reflecting prominent 
directionality in the depositional setting (such as, along and 
perpendicular to channels). 
 
The most common approach to modeling geometric anisotropy is 
to find ranges, ax, ay, and az, in three principal, orthogonal 
directions and transform a three-dimensional lag vector 

( )zyx hhh ,,=h  into an equivalent isotropic lag using: 
 

( ) ( ) ( )222
zzyyxx ahahahh ++=  
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To check for directional dependence in an empirical 
semivariogram, we have to compute semivariance values for data 
pairs falling within certain directional bands as well as falling 
within the prescribed lag limits.  The directional bands are 
specified by a given azimuthal direction, angular tolerance, and 
bandwidth: 
 

 
 
Here is the porosity semivariogram in the directions N 0° E, N 45° 
E, N 90° E, and N 135° E with angular tolerance of 22.5 and no 
bandwidth limit, together with the omnidirectional Gaussian 
model: 

 
 

The directional semivariograms are noisier due to the reduced 
number of data pairs used for estimation.  They do not show 
overwhelming evidence of anisotropy. 


